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An experimental and analytical investi~tion of the flutter of .
sweptback cantilever tinge is reported. The experiments employed groups
of wings swept back by rotating and by shearing. The angle of sweep
ranged from 0° to 600 and Mach nuuibersextended to approximately 0.85.
A theoretical analysis of the ah forces on an oscillator@ swept wing
of high len@h-t=hord ratio is develo~d, and the approximateions
inherent in the assumptions are discussed. Comparison with experiment
indicates that’the analysis developed in the present paper is satis-
factory for giving the main effects of sweep, at least for nearly
uniform cantilever wings of high and inoderatelength-to-chord ratios.
A seperation of the effects of finite span and compressibilityy in their
relation to sweep has not been made experiment+y but some cmibined
effects are given. A discussion of some of the experimental and theo~
etical trends is given with the aid of several tables and figures.

moDucTIoN

The present paper is an otigrowth of the
swept wings for hig&speed flight and reports
and of an accapaqing erploratoq program of

trend toward the use of
the results of an analysis
research in the Langley.

4.>f oot flutter research tunnel on swept cantilever w3_ngs. The
material was assenibledin a memorandum form with a similar title in 1948.
The chief purposes of the present paper are to provide a more detailed
exposition of the analysis and to make the main material more generaliy
available.

Mention of some previous experimental and analytical work on swept
wings fOllows. A preliminary experimental investigateion of the effect
of sweep on flutter has been mde (reference 1) with a single, simple
rigid wing mounted flexibly at one end of a base which could be rotated
to various desired sweep engles. This investigation was maie at low
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Mach nuuibersfor two len-orsion frequency ratioe and at-several
angles of sweepback. Another Mvestigation (data unptilished) in which
the density of the test medium was a variable was conducted by D. Benun
on the same type of rigid= flexibly mounted wing at higher Mach numbers
and at sweep angles of 0° and 45°. Other unpublished work on swept wings
exists, but a search of the available information indicates a need for
further systematic study.

The eqmrimsurtal work reported herein dealt with models mounted as
cantilevers at their roots. These cantilever models differed from the
rigid, flexi%ly mounted w3ngs, which had all bending and torsion flexi-
bility concentrated at the root~ and thus were subject to clifferent root
effects. In order to facilitate analysis the cantilever models were
uniform and untapered. The intent of the experimental program was to
establish trends and to indicate orders of magnitude of the various
effects of sweep on flutter, rather than to isolate precisely the
separate effec’ts.

The models were swept back in two basic manners - shearing and
rotating. For the case in which the wings which were swept back ly
shearing the cross sections parallel to the air streemq the span amd
aspect ratio remained constamt. For the other case, a series of
rectangulqlawform wings were mounted on a special base ‘whichcould
be rotated to protide any desired singleof sweepback. This rotatory
lase was also used to examine the critical speed of sweptforward wings.

Tests were conducted slso on special models that were of the
llrotatedlltype (sections normal to the leading edge were the same at
all sweep angles) with the clifference that the bases were alined
parallel to the air stream. Two series of such rotated models having
clifferent lengths were tested.

kasmuch as the location of the center of gravity, the mass-density
ratio, and the Mach nuniberhave important effects on the flutter charac-
teristics of unswept wings, these parameters were %rie d for swept wings.
In order to investigate possible changes in flutter characteristics
which might be due to iHfferent flow over the tips, various tip shapes
were included in the experiments.

W an “analysisof flutter, vibrational ctiacteristics are very
si@ficti ; accordingly, vibration tests were made on each model. A
specisl study of the change in frequency and mode shape with angle of
sweep was made for a simple alumin~oy be- and is reported in
appendix A.

.’

Theoretical smalyses of the effect of sweep on flutter exist only
in brief or prelfiery forms. Zn @@and in 1942 W. J. Duncan estimated
by certain dimensional considerations the effect of sweep on the flutter
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speed of certain specialized wing types. Among other
whose nsmes are mentioned in connection tith problems

3

British workers
of flutter

involving sweep are R. McR3nnon Wood, A. R. CoKLar, and 1. T. Mnhinnick.
An account of Minhinnickts work was given by Broadbent in reference 2.
In reference 3 a preliminary smalysis for the flutter of swept wings h
incompressible flow is develo~d on the basis of a “strip theo~’ (tith
the strips taken h the stream direction) and is applied to the experi–
mental remilts of reference 1. E&amination of the limiting case of .
infinite spsm discloses that the aerodynamic assumption employed in
reference 3 are not well-grounded. Reference 4 atipts this “strip
theor#’ to flexlble wings and also presents an alternative “velocity
component” treatment employing other aerodynamic assumptions which in
their end result appear more akin to those employed in the analysis of
the present paper. No definite choice is made in reference 4 between
the two methods although the “strip theory” methed is favored.

M the preseti paper a theoretical analysis is developed anew and
given a general presentation. Application of the analysis has been
limited at this time chiefly to those calculations needed for comparison
with enerimental results. -A wider examination
parsmeters and of additional degrees of freedom
istics is desirable.

SYMBOI.S

I)r

c
o

-1

A

%3

Yt .

of the
on the

effect of various
flutter characte~

half-cho?xlof ~ measured perpendicul.sxto ehstic
@s, feet

half+hord perpendicular to el&tic -s at reference
station, feet

effective length of wing, measured along elastic axis,
feet

wing chord measured perpendicular to elastic axis, inches

length of wing measured along midchord line, inches
.

angle of sweep, positive for sweepback, degrees

geometric aspect ratio
(5%9

coordinate perpendicular to elastic axis in plane of
wing, feet

coordinate along elastic axis, feet

‘
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fh(y’), F&l)

fe(ys), Fe(q)

t

@
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%

‘hl

“‘%

ft

coordinate in direction perpendicular
feet
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to Xty’ @Eme,

coordinate of wing surface in 2’ direction, feet

nmdhensional coordinate along elastic ads (y*/Z’)

coordinate in ~+lmeam direction

bending deflection of elqstic axis~ positive downward .

torsional deflection of elastic axdsz positive with
leading edge up

localbending

local rate of

()ah“-o* ‘f ‘bstic ‘s ~

Vc- ‘f ‘tist * ‘

deflection function of wing in bending

deflection function of wing in torsion

the

angular frequency of vibration, radians per second ‘

angular uncoupled bending frequency, radians per second ‘

angular uncoupled torsional frquencya bout ekstic exis,
radians per second

first lending natural frequency, cycles per second-

second bending natural freque~y, cycles per second
●

ftist torsion natural frequency, cycles per second

.

.
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‘ i’a

fe

fR

fA

Ve

‘R

VR*

‘A

5..-

uncoupled first torsion frequency relative to elastic

[
axis, cycles,~r second ~ H%2-

‘a

2

1-

().

%
ft

experimerrtalflutter frequOncy, cycles per second

reference flutter frequency, cycles per second

fltiter frequency detemined by analysis of present
reportj cycles per second

free+tream velocity, feet per second

experimental

component of
ads, feet

experhental

flutter speed, feet per second

a~ream yelocity perpendicular to elastic
per second (v cos A)

fltiter speed taken parallel to air stream,
miles per hour

reference flutter speed, miles per hour

reference flutter speed based on wing elastic axis,
miles per hour (clefined in ap~dix B)

flutter s~ed determined by theory of present report,
miles per hour

theoretical divergence speed, miles per hour

reduced frequency emplo@ng velocity component

().

(illperpendicular to elastic axis ~.
n

phase M.fference between wing bending and wing torsion
strains, degrees

‘densityof testing medium at fltiter, slugs per cubic
foot

-.——. __— —._. —_.._____ _+ ___ —.. . . . ___
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M

%r

m

R

‘a

EI

GJ

%

-c presswe at flutter, pounds per square foot

Mach nuniberat flutter

critical Mch number

distance of center of gravity behind leading edge taken
PerPewc* to ehtiic *s, percent chord

distmmce of elastic center of wing cross section behind
leading edge taken perpendicular to elastic axit3,
percent chord

distance of elastic tis of wing behind leading edge
taken perpendicular to elastic axis, percent chord

nondimensional

nondimensional

(1)<a ~elastic+xris position — —
00

(1)‘ag ~
center-of+ye.vity position — –

00

mass of wing per unit len@h, slugs per foot

wing mass+iensity ratio at flutter
()
@
m

mass mcment of inertia of wing per unit length about

elastic @s ~ slug-feet2 per foot

nondimmsionel radius of gyration of wing about elastic

bending stiffness, pound-inches2 in tables, pound-feet2
in enslysis

torsionel stiffness, pound-inches2 In tablas, pound–

feet2 in analysis

structural damp- coefficient for bending vibration

,,

— -. ----
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%
structural damping coefficient for torsional vibration

H ‘ a WCi~ ~racket wed to identify terms which are due
solely to inclusion of the last term in equation (~)

Note: h order to,preserve continuity and to facilitate comparison with
previous work on the unswept wing, the subscript a rather than 19 is
retained with certain quemtities to refer to the torsional degree of -
freedan.

~ Investigation?

Apparatus

Wind tunnel.– The tests were’conducted h the Langley k.>f oot”

7

flutter research tunnel which is of the closed–throat, single-return type
employing either air or I&eord2 as a testing medium at pressures
vexying from 4 inches of mercury to 30 inches of mercury. = IYeon-12,
the speed of sound is 324miles per hour and the density is 0.0106 slug
per cubic foot at standard pressure @ tempemture. The ~ choldng
Mach nuder for these tests was approximately 0.92. The Reynolds nuniber

=e was from 0.26 x 106 to 2.6 x 106 tith most of the tests at Reynolds

numbers of the order of 1.0 x 106.

~.– b order to obtati structural parameters required for the
flutter studies, different types of construction were used for the models.
Some models were solid spruce, others were solid balsa, and many were
combinations of balsa with various,alumin~oy inserts. Seven series
of m6dels were investigated, for which the cross sections and plan forms
are shown in figure 1.

Figure l(a) shows the series of moclds which were swept back by
shearing the cross sections parallel to the air stream. In order to
obtain flutter with these low-aspect-ratiomodels, thin sections and
‘relativelylight and weak wood construction were employed.

The series of rectangdar+l~f orm models shown in figure l(b) were
swept back by using a base mount that could be rotated to give the desired
sweep angle, The ssme base mount was used for testing models at forwsxd
sweep angles. It is known that for forward sweep angles divergence is
critical. In an attempt to separate the divergence and flutter speeds
in the sweepforward tests, a I&spar cross+ectional construction was
used to get the elastic axis relatively far forward (fig. l(c)).

,

— —.—-—-.—-———— .—. -.—. —.. — —————— -——--—--——-;
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Two series of wings (figs. l(d) and l(e)) were swept
lengtl+t~hord ratios kept constant. ~ these series of
chord perpendicular to the leading edge was kept constant

NACA TN 2121

back with the
models, the
and the bases ‘

.

were alined parallel to the air stre& The wings of len.gth+o-chord
ratio 8.5 (fig. l(d)) were cut down to get the wings of length-to-chord
ratio 6.5 (fig. l(e)).

Another series of models obtained by using this same manner of
sweep (fig. l(f)) was izsedfor investigating soniceffects of tip shape.

.
Spanwise strips of lead were fastenedto the models shown in fig=

ure l(e) and a series of tests were conducted with these weighted models
to determine the effect of center+f~avity shift on the flutter speed
of swept tihgs. The method of var@ng the center of gravity is shown in
figure l(g). In order to obtain data at zero sweep *e it wa13neces-
sary, because of the proximity of flutter speed to wing+ivergence s~ed,
to use three different wings. These zerc+mreep-angle wings, of 8-inch
chord and 48-inch length, had an internal weight system..

The models were mounted from the top of the tunnel as cantilever
beam with rigid bases (fig. 2). Near the root of each model two sets
of strain gages were fastened, one sOt for recording principally bending
deformations and the other set for recording principally torsional
deflections.

Methods

Ik3temdmation of model parameters.— Pertinent gemetric and struc-
tural properties of the model are given in tables I to VII. Some
Psrameters of interest are discussed in the following paragraphs.

As an indication of the nearness to sonic-flow conditions, the
c~tical Mach number is listed. This Mach rnmiberis determined by the

/
lkman+sien method for a wing section normal to tiheleading edge at
zero lift.

The geometric aspect ratio of a wing is here defined as

Semispan2 = J2 2
A. = cos A) = 1cos2A .&
--5 P~fomn area Zc c 2

The geometric

aspect ratio
sheared swept

.

aspect ratio Ag is used in place of the conventional

A because the models were only semispan wiqgs. For
wings, obtained from a given unswept wing, the geometric

.—.—



●

9

.

NACA TN 2121

aspect ratio is constant,

chord ratio the geomtric

whereas for the wings of constant length=to-

aspect ratio decreases with COS2A as the
angle of sweep is increased.

The weight, cente=f~vit y position, and poler moment of inertia
of the models were detemined by usual means. The mddels were stati-
cally loaded at the tip to obtain the rigidities in torsion and bending,
GJ

the
at

‘The

A m.

A parameter occurring in the methods of analysis of this paper is o
position of the elastic axis. A “section” elastic axis located
~a was obtained for wings from each series of models as follows:

wings were clamped at the root normal to the leading edge and at a
chosen epanwise station were loaded at points lying in the chordwise
direction. The point for which pure bending deflection occurred, with
no twist in the plane normal to the leading edge, was determined. The
same procedure was used for those wings which were clsmped at the root,
not normal, but at an angle to the leading edge. A different elastic
axis designated the “wing” elastic axis and located at ~a? was thus

determined.

For these uniform, swept wings with fairly large lengtkto+hord
ratios, the “wing” elastic @s *S reasonably straight and remained
essentially parallel to the “section” elastic exis, although it was
found to move farther behind the “section” elastic axis as the angle of
sweep was increased. It is realized that in general for nonuniform “
wings, for example, wings with cut+uts or skewed clamping, a certain
degree of cross stiffness exists and the ooncept of an elastic axis is
an aversinplification. More general concepts such’as those involving
influence coefficients may be required. Thesq more strict considera–
tions, however, are not required here since th,eelastic+xis parameter
is of fairly secoqdery tiportemce.

The wing mass+kmsity ratio K is the =tio of the mass of a
cylinder of testing medium, of a diameter equal to the chord of the
~, to the mass of the wing, both taken for unit length along tile
wing. The density of the testing medium when flutter occurre”dwas used
in the evaluation of K.

Determination of the reference flutter speed.- It is convenient in

presenting and comparing data of swept and tiept wings to employ a
certain reference flutter speed. This reference flutter speed will
serve to reduce variations in flutter characteristics which arise from
changes inthe various model parameters such as density and section
properties not pertinent to the investi@tion. It thus aids ““nsyste~
atizing the data and emphasizing the desired effects of sweep including

,, effects of aspect ratio and Mach number.

-. ——.————..———— . . . —.— —
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This refOrence flutter s~ed ~R may be obtained.in the following

W* Suppose the wing to be rotated shut the intersection of the
elastic -s with tlm root to a position of zero sweep. In tms posi–
tion tha reference fltiter speed is calculated %y the nmthod of refe%
ence ~= which assumes em idealized, uniform, infinite wfng mounted on
springs in an incompressible medium. For nonuniform wings, a reference
section taken at a representative spemwise positi~, or some integrated
value, may be used. Since the wings used were uniform, my reference
section will serve. The reference flutter speed may thus be considered
a ‘~section” reference flutter sped and parameters of a section normel
to the lead3ng edge are used in its Cactition. Thls calculation ‘
also employs the uncoupled first bending and torsion frequencies of the
wing (obtaihed from the measured frequencies) and the measured density
of the testhg medium at time of flutter. The calculation yields a
corresponding reference flutter frequency which is useful in comparing
the frequenty data. For the sab of completeness a further discussion
of the refer?nce flutter speed is given in a~endix B.

Test procedure and records.– Since flutter is often a sudden and
destructive phenomenon, coordinated test procedures were required.
During each test, the tumnbl speed was slowly raised until a speed was
reached for which the amplitudes of oscillation of the model in bending
and torsion increased rapidly while the frequencies in bending and to~
sion, as o%served on the screen of the recording oscill.ograph,merged
to the sam value. At this instant, the tunnel conditions were recorded
smd an oscillogra~h record of the model deflections was taken. The tun-
nel speed was imediatel~ reduced 4 an effort to prevent destruction
of the mdel.

ltromthe tunnel data, the experimental flutter speed Te, the dew
sity of the testing medium p, and the Mach nuniber M were determined.
No blocklng or wake corrections tQ the measured tunnel velocity were
applied.

From the oscillogram the experimental flutter frequenty fe and
the phase ~femnce ~ (or the -se difference ZL80°) between the
bending and torsion deflections near the root were read. A reproduction
of a typical.‘oscillographflutter record, which -indicatedthe flutter to
be & coupling of the wing bending and torsion degrees of freedom, is
shown as figure 3. Since semispan wtngs mounted rigidly at the base
were used, the flutter mode may be considered to correspond to the flut—
ter of a complete ~ having a very heavy fuselage at midspan, that is,
to the syamtrical type.

The natural frequencies of the models in lencltngsad torsion at
zero &speed were recorded before and after each test in order to
ascertain possible changes in structuml characteristics. In most cases
there were no appreciald-echanges ti frequencies hut there were some

.————
,

.——.

.
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reductions in stiffnesses for motils which had been wexened by flut-
tering violently. Analysis of the decay records of the natural f%-
quencies indicated that the wing damping coefficients ~ and ~
(reference 5) were about 0.02 in the first beding mode and 0.03 in the
torsion mode;

fmAimrIcALINVESTIGATION

General

Assumptions.- An attempt is first made to point out the ~
assumptions which seem to be applicable for swept - of mcdmate
taper and of high or moderate lengtkt=hord ratios.

(a) The assumptions, such as SMXL disturbances and potential flow,
ccmmonly employed in linearized treatment of UrJEweytwings h an ideal
incompressible fluid are made.

(t) The structural behavior is such that over the main part of the
~ the elastic sxis may be considered straight. The wing is also cQ-
sidered sufficiently stiff at the root so that it behaves as if it were
clamped normal to the elastic axis. An effective length z‘ needed
for integration reasons may be defined (for exsmple, as in fig. 4). The
angle of sweepback is measured in the plane of the wing from the direct-
ion normal to the air stream to ,theelastic axis. All section parame—
ters such as semichord, locations of elastic sads and center of gravity,
radius of mat ion, and so forth, are based on sections norml to the
elastic axis.

(c) The aerodynamic behavior is such that any section @’ of the
wing normal to the elastic sxis, taken in the direction of the comp~
nent v cos A of the ma~tream velocity, genemtes a velocity Qotep
tial associated with a uniform infinite swept wing having the same
instantaneous distribution over the chord of velocity normal to the
ting surface as does the actusl section.

Additional remdss on these assum@ions sre appropriate. With
regard to assumption (a), in accordance with lhearization of the prob
lem, the boundary conditions are stated ELMItreated with respect to a
reference surface, in tlrb case a plane, containing the mean e@lilmium
position of the wing and the nmin+tream velocity. Furthermore, incom-
pressible flow is assumed in order to avoid camplefity of the anslysis,
although modifications due to hh nunber effects can be added. Such
modifications may be based, for exsmple, for wings having large lengtk
to+hord ratios, on existing theoretical calculations o> aerodynamic
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coefficients for subsonic or supersonic two-dimensional flow appropriate
to the component v cos A. On the other hand the mo~ications may be u

partly empirical, especially for “transonic” conditions and for small
lengtbto+hord ratios. The trsmmnic conditions and the general aerb
-c behavior of swept wings may depend, for lexge length+ c-chord
ratios, on the component v cos A, but the tipendence may shift to the
stream velocity v for smil_llength-t~hord ratios.

With respect to assumption (b), results of analyses of and experi-
ment on ummept @rigs having low mtios of bending frequency to torsion
frequency show that small variatiana of position of the elastic axis
are not hportant. The assumption of a straight elastic axis over the
main pert of a swept wing, simikrly, is not critical for many cases.
This assumption is made for convenience, h6wever, and.modifications for
a curved elastic axis can be nwie when necessary, for example, for
plate+like wings. Smell differences in the eagle of sweepback of the
leading edge, quarte~hord lhe, elastic Ws, end so forth, are ne~
lected. The analysis could be further modified to take into account
variation of tiheangle of sweeplmck along the length of the wing.

Assumption (c) implies that asmciated with the action of the wing
in pus- air downward there is a noncirculatory potential+~ flow
mlmller to that around sections of an Infidte flat-plate wing.
Furthermore, as in the case of the unswept airfoil, a circulatory
potential-type flow is generated in which for the swept airfoil the
component v cos A is decisive in ffing the circulation. (This
assumption differs frmn that made in the “strip theo&’ of references 3
and 4 which employs the ~ream velocity together with sections of
the wings paraJJ-elto the stream direction.) Effects of the floating
of the wake in the stream direction rather thm in the direction
of v cos A and induced effects of variation of the strength of the
wake in the wing-length direction are neglected, as are three-
dimensional tip effects. For large values of the reduced frequency ~
a given segment of the wing might be influenced chiefly by the neuby
wake and the correction would be @. On the other hand, for small
values of kn a given segment might be influenced by a more widespread
portion of the web; corrections for this condition may possibly be
based on knowledge of the static case (for example, slope of the lift
curve). As the angle of sweep approaches $@, obviously the mechanism
for the generation of lift is different from the one postulated here;
for example, a tip con~t ion may replace the trailing-edge condition,
and considerations of,very mall aspect ratio arise.

Basic Consiaeratiom .– Consider the confi&?ation shown in figure 4
where the vertical coordinate of the wing surface is denoted by
~t = Z(X1,y’,t) (positive dowmward). The effect of the position and
motion of the wing may be given by the disturbance+elocity distribution

.

.

.—— .——
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to be superposed on the uniform stresm in order to represent the condi-
tion of tangential flow at the wing surface. This ~elocity distribution
normal to the surface (positive upward) Is? for EUMJ disturbances,

(1)

where ~ is the coordinate in the wind-tream direction. With the.use
of the relation

az az—COSA+= &t —sinAayt

-thevertical.velocity at any point is

(la)

Let the wing be bending so that a segment dy’ (see fig. 4) is
displaoed from its equilibrium positian by em incremental distance h
(positive d~) and also let the wing segment be twisting about the
elastic axis through an incremental angle e (positive leadlng edge up).
The position of each point of t’hesegment may be defined.,
deflections, by

Z=h +x10

The velocity distribtiion normal to the surface, eqwtion
quently becames

. .
w=h+xte+vecos

where u = 2!%is the local bending

A+ V(U + X’T)Sti A

slope of the elastic

for small

(2)

(la), conse-

.

(3)

aXiS, and iS

24thus analogous to dihedral, and where T = —

w

is the local change of

twist of the elastic axis,

~ accordance with assumption (c) the noncirculatory-flow velocity
potentials associated with the vertical-eloci~y distribution are first
needed. ~ equation (3) the terms involtin h,

,$
19,and u are constant

across the chord, whereas those involving and T vsxyinalineex

. .--— .—— .. ——.——... ——.———— .—. + -——— .—..——
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manner.
the new

The noncirculatory velocity ydentials as in reference 6 and
potentials associated with u and T me

where Vn = v
measured from

~ = fiqm” .

~e‘ _V.ebj~2

% ‘vnatiA%-

$~ = 6.2(; - a)~~2

~~ = TnT tan A b2(~ - a)~i
~ !’

cos A sad x is the nondimmional chordwise coordinate
the midchord as in reference 6, related to the coordinate

(4)

Xt in the manner

x= ti+a
3

5 velocity potential for the cticul.storyflow associated with the
wake may be develuped on the basis of assumption (c) and the concepts
for the infinite unswept wing introduced in reference 6. (Thus the
circulatory-flow patten for a section dy’ of the finite swept wing
is to he obtained frcunthe corresponding flow pattern for an infhite
uniform yawed wing. This infinite wing is assumed to have undergone
harmonic oscillations for a long t5me; the ftiU wake is established,
remains where formed, and consequently is harmonically distrilnrbedin
spaoe. F@? the infinite uniform yawed wing results for the circulatory
flow are lilm those of reference 6 with v replaced by the component
Vn and with the addition“ofterms to teke care of u and T .) In
particular, the strength of the wake acting on each section is dete~
mined by the condition of smooth flow (the velocity remaining finite)
at the trailing edge. This condition is utilized in the form

$$#r + @N) is eqti to i fifite quantity at the trailing edge; (where

#r is the velocity potential due to the vorticity in the wake, and ~
is the total noncirculatory velocity potential) and leads to a relation
analogous to equation (~) of reference 6 involving the basic quantity

()
1

Q=li+vnO +vnatsn A+h~- a(6+vn’ tan A) which occurs in the

temns associated with the wake. The net result
is that the circulatory-flowvelocity potential
detemined.

of these considemtions
may be regarded as

.

,

—-—— .-.-.
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wing
The pressure difference between upper and lower surfaces of the
at a petit x is

.=%+’%’-++’+ (5)

where ~ is ingeneral thetotalputential, the sumof, circulatory-and
noncirculatory-flow potentials. The last term in eq,uation(5) is the
product of the component of ma~ream velocity taken along the wing
and the lengthwise change in the velocity potential, and is often neg-
lected even in steady-flow work. The question of the retention or ne~
lect of this last term seems partly dependent on the order in which the
approximations we introduced; s~ecifically, whether velocity potentials
for the whole flow pattern are found and then the integrated forces are
determined or whether section forces are first detemined and then inte-
grated. It seems a~ropriate to retain at least the noncirculatory part
~ of # in the last term of equation (5). In view, however, of the
nature of the approdnate treatment of the circulatory potential and of
the inherent shortcomings of a strip analysis, in particular the neglect
of lengthwise variations in wake vortex strer@h, complicating the
results by also including ~r in this term does not appear worth while.
(This neglect of ~r and retention of ~ is realized to involve some
inconsistencies in that account may not be taken of other higher order
terms assmiated with lengthwise variation of the wing wake, which may
be of the same order as terms retained.) Thus equation (5) lecomes

(5a)

For harmonic motion in each degree of freedom, relations for the
pressure may he integrated over the chord to yield expressions for the
air forces and mommts. For the sake of separating and identifying the
terms in force and mnment expressions which are due solely to the inclk

sion of the last term in equation (~) a special bracket { 1-is

employed. ThuE these terms may be readily mitted. fiumericalchecks
among the calculations made for the present paper showed the effect of
incl@@n of the last term in (~) on the calculated results to be quite
small, even for 600 of sweepback within the range of other palzuneters
investigated.

.. ——______ ._ ...,__ ————.———. .—— — —.—— .-. —



16 NACA TN 2121

The expressions for the aerodynardc.lift (positive down) and for
the mcmnt almut the elastic axis (positive leading edge up), each per
unit length of the wing, are: .

.
.

‘n2%tm231+@’3aF+’.’tmA+n’n’‘a A+~.2*t=2Ail,

(6)

Ma= 2fipvnb2(*+ a) C~+ Vn6’+vna tan A+ b(~-a)(; + V’nTtanA~ -

. K)31”fipvnb ——se+. ~
2 ‘nT ‘= ‘J+ “f’b’at’+ ‘n’ ‘mA+ ,

where

c = C(ICJ= F(k) + @~) .

is the function associated with the wake developed by ‘l?heodorsenin
reference 6; the reduced frequency parameter ~ is defined by

%1=:’-- (8)
v cos A

As has already been stated, the foregoing expressions were de~eloped -
and apply for steady sinusoidal,oscillations,

h = hl(y)eM

e = e~(y)e
“ .J (9)

>

.

.

-—-
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The amplitude, velocity, and acceleration in each degree of freedam are
related as in the h degree of freedom; that is,

‘Ii =iuitl

1

Expressions for force and moment.- With the U& of such relations

equations (6) and (7)my be put into the for&

I& = -mPlw(ma + Em@)

where

in which the four following coefficients:

1=—— -()$+ ELAch
2

(10)

(U)

..— ._. - ——.— ._ .._. .. . . ._.._— .. .. . . _ _._.. - -. - ___
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i (1——2
L

are identical
Additionelly,

HACT=+
%

with those used in

i&~ +f’l+(;-

the case of the unswept wing.

)ila&

As was previously stated, the special bracket ~.~ is used to identify
terms originating in the last term of equation (>). .

It is of interest to note that equations (6) and (‘i’)reduce, for
the case of the wing in steady flow (Is&= O), to

pr unit length of wing.

.

(lOa)

(l-la)

— .—-. — —— -————.—— —
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Introduction of modeso–
aerodynamic force and mament
in a simple harmonic manner.
applicable to a wing segment

19

Equations (10) end (11) give the total

on a segment of a sweptback ting oscillating
Relations for mechanical equilibrium
may be set up, but it is prefemble to bring

in directly the three-dimensional+node considerations. .(See for example,
reference 7. ) This end may he readily accomplished by the conibineduse
of Rayleigh type approximations and the classical methods of Lagrange.
The vibrations at flutter are assumed to consist of @ ccmibinationof
fixed mode shapes, each mode shape representing a degree of freedom
associated with a generalized coordinate. The total mechanical ener~,
the potentiel ener~, and the work done by a~lied forces, aerodynamic
and structuml, are then obtained by the integration of the section
characteristics over the span. The Rayleigh type approximation enters
in the representation of the potential ener~ in terms of the uncoupled
frequencies.

As is customary, the modes are introduced into the problem as
VO.l@ng ShLsOi~y with time. For the purpose of simplicity of .
analysis, one bending degree of freedum and one torsion degree of
freedom are carried through in the present development. Actually,
any number of degrees of freedom may be added if desired, exactly as
with an unswept ~. Let the mode shapes be represented ly

(M)

where ~ = ~eti is the generalized coordinate in the bending degree

of freedom, and 8 = eoefi is the generalized coordinate in the ‘

torsion degree of freedom. (In a more general treatment the mode
shapes must be solved for, but in this procedwe fh(Y’) ~d f~(y’)

are chosen, orUnarily as real functions of y!. Complex functions
may be used to represent twisted modes.) The constants ho and 00
are in geneti complex and thus sigmlfy the
the two degrees of freedom.

For each degree of freedmu em equation
obtained frmu Lagrange’s equation

phase Uffemnce between

of equilibrium my be

(13)

.... —_. —.—. —-————.. __ __ —. —.- . .-——. — ——.— .—— - _—. - —.—
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where qi is a generalized coordhate and Qi is the corresponding

generalized force. The kinetic 8nergg of the mechanical system is

1 # J’
2*

J’
2’

T =— m[fh(yt)12@t + ~ 12 @fe(Y’g 2@’ +2– ~ o

m

k

@l

ina

where

mass of wing per unit length, slugs per foot

mass mcmmnt of imrtia of wing about its elastic axis
per unit len@h, slug-feet2 per foot

distance of sectional center of gravity from the elastic
axis, positive reaward, feet

The potential ener~ of the mechanical system may be expressed
form not involving benmorsion cross-stiffness terms:

(14)

where

EI lending stiffmss, pmnd-feet2

GJ torsional stiffness, pound-feet2

If Rayleigh type approxinmtions are used to introduce frequency,
the expression for the potential ener~ may be written in a mme
convenient form:

-s

z’

J

It
u .$ ~2h2 @h2@r + ~ ~2~2 o Iafe2dy’ (l%)

o
.

—. —.



I?ACATN 2121 21

Another expression for the ~otential energy is
. ●

.

.

.

The effective spring constants Ch and Ca correspond to unit length

of wing and thus confom to their use in references 5 to 7. The
constants are effectively defined by

%2=

%2= [

28
Caf&’dy’

o
7.t

These effective spring constants are related to the frequencies
associated with the chosen modes. For s~alled uncoupled modes
the frequencies appropriate to pure modes (obtained by proper
constraints) are often used. On the other hand, employmnt of
the normal or natural modes and fregyencies appropriate to them,
which might be obtained by proper ground test or ly calculation,
may .bepreferred. In either case the convenience of not having
cross~tiffness terms in the potential-energy expression is noted.

Application is now made to obtain the eg.uationof equilibrium ih
the bendin& degree of freedom. Equation (13) becomes

-r)d
‘$+g=Qhdt~ _ _

‘(16)

The tW7U Qh represents all the bending forces not derivable from the

potential~ner~ function and consists of the aerodynamic forces
together with the structural damping forces. The.virtual work bW
done on the wing by these forces as the wing moves through the virtual
displacements bh and be iS:

.
—.. ———. ———. -— — .— — __ —_ .
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J’li2“t
m= P )(–Ch~fibh+ ~–Ca=

)]
%Mhiyt

o

.

where

%h stmtural &up@ coel’ficient for bending vibration

f% structural demping coefficient for torsional vibration

h this expression the aerodynamic forces appropriate to sinusoidal.
oscillations are used. The application of the structural damping as ‘
in equation (17) (proportionalto deflection and in phase with velocity)
corresponti to the namer in which it is introduced in reference 5.

For the hdf+ing

{( )2 &i-}+Q*i(%)2&Fh+w– ~ b2&n2A)fh
kn2

where br is the semichord at some reference

the operations i&licat6d in @ation (16) and
to the equation of equilibrium in the bending

(18)

J

section. Performance of

collection of terms lead
degree of freedcm

.

.

—
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({[ ]+’z’(+y:f,w -~~’’(+pchfh%f +(~)2(1 + ‘gh) br ~
.

Q l–
U

.

(19)

where
.

By a
torsional

-lel tivelopment the equation of equilibrium for the
degree of freedom may also be obtained .

br J’() d?,
—w’–

“ ~ 5t~ .(~T)fe F&rt

o br

.

~— —...
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where ra .~~, ( -radiuE of gyration of wing about the elastic

-s).

Detemina&al equation for flutter.- Equations (19) and (20) may be

rewritten with the use of the non~nsional coordinate ~ = ~. They
21

then are in the form ~

(-% + @2)fiPbr3&= O (lga)

.

_.— _ ..— — -. .—. — .. —._. ——.—
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.

in which Fh(~) = f’h(z’~) and Fe(v) =fo(z’~).

The borderline ccmiition of flutter, separating damped and
undamped oscillations, is detemnined from the nontrivial solution of
the simultaneous homogeneous equations (lg.) and (20.). Such a
soltiion corresponds to the fact that mechanical equilibrium exists
for sinusoidal oscillation at a certain airspeed and with a certain
frequency. The flutter condition thus is given %y the vanishing of
the determinant of the coefficients

f% B2
= o,

D2 E2

Application to the case of uniform, cantilever, inept wimgs is
made h the neti section.

-——- -....— .. . ——_ __ .._._. . — -- — --.——————- ---- — . .. ..



.

26 NACA TN 2121

Application to Uniform Cantilever Swept W-

The first step in the application of the theory is to assume or
bvelop the deflection functions to be used. For the purpose of applyzhg
the analysis to the wbg models employed in the experiments it appeared
reasonable to use for the deflection functions, 5h(TI) ~d Fe(TI),
the uncoupled first lending and first torsion mode shapes of an ideal
uniform catilever beam. Althou@ approximateions for these mode shapes
could be used, the anslysis utilized the exact expressions developed
from equations (120) and (106d), respectively, of reference 8 by appli-
cation of appropriate boundary conditions.

The hemMng+node shape can be written

w~re 91 = O.596gYc for first bending. The torsim mode shape can be

written
.

Fe(q) = C2 sin ppq

where 132‘ ; for first torsion and Cl and C2 are constants.

The integrals ap~aring in the determinismt elements ~, B2s D2>

and ~ are

J’1.0 F#~ = 1.8554cf
o

J’1.0 Fe2d~ = O.5000C22
o

i —- _ _ —.
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.

J’1.0 me
Fe — d~ = 0.3183c22

o d~

J’1.0 d2Fh
Fh — d~ = L5926c12

o d72

J’
1.0 d2Fg

Fe — d~ = –1.2337C22
o dq2

.

J’
1.0 J’1.01$#’~d? = F~Fh dq =-0.9233C1C2
o .0

r.0 dF~
Fh— dq = -1.4040C1C2

o dq

r.0 d2F
%$dq =2.2782C1C2

o

.

-—. .— ——————.——————..—— -
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w

It is interesting to note that the parameters A and Z’/br appear only
.

in the combination
tan A

G
in the immediately preceding determhant.

The solution of the determinant results in the’flutter condition.

RESULTSAND DISCUSSION “

Experimental Investigation

Presentation of experimental data.- Results of the expertiental
investigation are listed in detail in tables I to VII, and some
significant experimental trends are illustrated in figures 5 to 10.
As a basis for presenting smd comparing the test results, the ratio
of expertiental tunnel stream conditions to the reference flutter
conditions is employed so that the data indicate more clearly combined
effects of aspect ratio, sweep, and Mach rnmiber. As previously
mentioned, use of the reference flutter speed VR serves to reduce

variations in flutter characteristics which arise from changes in
other parameters, such as density and section properties, which axe
not pertinent to this investigation. (See appendix B.)

Some effects on flutter speed.- A typical plot showing the effect
of compressibility on the flutter speed of wings at various angles of
sweepback is shown in figure 5. These data are from tests of the
rectangula&plan-form models (type 30) that were swept back by use of
the rotating mount, for which arrangement the reference flutter speed
does not vary with either Mach number or sweep angle. Observe the
large increase in speed ratio at the high sweep angles.

The data of reference 1 from tests of a rigid, flexibly mounted
rectangular model having a rotating base are also plotted in figure 5.
It canbe seen that the data from the cantilever models of the present
paper which had a similar method of sweep are in conformity with the
data from the flexibly mounted model. This indicates that, for uniform
wings having the range of parametersinvolved h these tests, the
differences due to mode shape are not very great.

Figure 6 is a cross plot of the data from figure 5 plotted
against A at a Mach nmiber approximately equal to 0.65. The data
of the swept wings of constant length-t~hord ratio and of the
sheared swept wings are also included for comparison. The velocity
ratio Ve/VR is relatively constant at small sweep angles but rises

noticeably at the large sweep angles. It is potited out that the
reference flutter speed VR maybe considered to correspond to a

—. -— — —. .
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Ve
horizo&al ltie at — = 1 for the rotated and constant-length-

v~

chord-ratio wi@s, but for the sheared wings this reference speed
corresponds tQ a @rve decreasing somewhat less rapi~ than ~= as
A ticreases. (See appMiix B.)

The order of magnitude of some three-tiensional effects may

(

z
be noted from the fact that the shorter w@s ~ = 6.5, fig. 6,

series V
) (

have highe~’velocity ratios than the longer wings ~ = 8.5,
. c

)series IV . This increase may be due partly to differences in flutter

modes as well as aerodynamic effects.

Some effects on flutter fTequency.– Figure 7 is a representative
plot of the flutte~frequency data given in table II. The figure shows
the variation in flutte~frequency ratio with Mach ntier for different
values of sweep angle for-the models rotated back on the special mount.
The ordtiate is the &tio of the experimental flutter frequency to the
reference flutter frequency fe/fR. It appears that there is a reduc-

tion h flutter frequency with increase in Mach nuniberand also an
increase h flutter frequency with increase in sweep. The data from
reference 1 show the ssme trend with increase in sweep. Considerably
more scatter may be noted in the frequency data than ~ the speed data
(fig. 5) from the same tests.

The results of the tests for rotated wings with chordwise lami-
nations (models WA, B, C, D) are given h table II. At sweep angles
up to 30° the values of the speed ratio Ve/VR for wings of this
construction Were’low (in the neighborhood of 0.9), and the flutter
frequency ratios fe/fR were high (of the order of 1.4). As these

results indicate and as visual observation showed, these models
fluttered in a mode that apparently involved an appreciable propox
tion of the second bend~ mode. The models with spanwise laminations
(models 30A, B, C, D) also showed indications of this higher flutter
mode at low sweep angles; however, these models were able to pass
through the small speed range of higher mode flutter without suffi-
ciently violent oscillations to cause failure. At a still higher
speed these nmdels with spanwise laminations fluttered in a lower
mode reseriblinga couplhg of the torsion and first bending modes.
This lower mode type of flutter characterized the flutter of both
the sheared- and constanfilength-chord-ratiomodels. .

For those whg models having the sheared type of balsa construction
(models 22’, 23, 24, and 25), the results are more difficult to compare

— ——.
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with those of the other models. This difficulty arises chiefly because
the lightness of the wood produced relatively high mass-density ratios K
and partly because of the nonhomogeneity of the mixed wood construction.
For high values of tC the flutte~peed coefficient changes”rather
abruptly even for the unswept nmdels (reference 5). The data are neve~
theless included h table I.

Effect of shift in cente~f~avity position on the flutter speed
of swept wings.— Results of the investigation of the effects of center-
of+gavity shift on the flutter speed of swept wtigs are illustrated in
figure 8. This figure is a cross’plot of the expertiental indicated air
speeds as a function of sweep angle for variouE cente~f~avity posi—

tions. The ordinate is the experimental indicated air speed
‘e=8Y

which serves to reduce the scatter resulting from flutter tests at
different densities of testing medium. The data were taken in the Mach -
nuniberrange between 0.14 and O.~, so that compressibility effects are
presumably negligible. As in the case of unswept wings, forward movement
of the center of gravity increases the flutter speed. Agati, the flutter
speed increases with ticrease in the angle of sweep.

The models tested at zero sweep angle (models 91–1, 91<, 91–3) were
of different construction from and of larger size than the models tested
at the higher sweep angles. Because of the manner of plotting the
results, nsmely as experimental indicated airspeed (fig. 8), a compar-
ison of the results of tests at A = 0° with the results of ,thetests
of swept models is not particularly significant. The points at zero
sweep angle are ticluded, however, to show that the increase in flutter
speed due to a shift in the cente=f~avity position for the swept
nmdels is of the same order of magnitude as for the unswept models. For
the unswept models, the divergence speed VD and the reference flutter

speed VR are fairly near each other, and although the models appeared

to flutter, the proximity of the flutter speed to the divergence speed
may have influenced the value of the critical speed.

The method used to vary the center of gravity (see fig. l(g))
produced two bumps on the airfoil surface. At the low Mach nunibersof
these tests, however, the effect of this roughness on the flutter speed
is considered negligible. For proper interpretationof figure 8 the
fact must be kept h mind that the method of varying the location of
the center of gravity changed the radius of gyration ra and the

torsional frequency fa.

The effect of sweepforward on the critical speed.– An attempt was
made to determine the variation in flutter speed with angle of sweep-
forward by testing wings on the mount that could be rotated both back–
ward and forward. As expected, however, the model tended to diverge at .

—. —---- -. —----- ..—. — .._— ___ -–-–-———————-–-—–- ——
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.

forward sweep angles in spite of the relatively forward position of the
elastic ~is in this D-spar wing. .

Figure 9 shows a plot of the ratio of critical speed to the refer-
ence flutter speed VR agatist sweep angle 14. Note the different

curves for the sweptback and for the sweptforward conditions and the
sh~ reduction in critical speed as the angle of sweepforward is
increased. The different curves result from two different phenomena.
When the -g was swept back it fluttered, whereas at forward sweep
angles it diverged before the flutter speed was reached. Superposed
on this plot for the negative values of sweep sre the results of
calculationsbased m an analytical study of divergence (reference 9).
Reasonable agreement exists %etween theory and experiment at forward
sweep angles. The small difference between the theoretical and experi–
mental results may perhaps be due to an tiqccuracy in determining either
the position of the elastic axis of the model or the required slope of
the lift curve or both.

The divergence speed VD for the wing at zero sweep ahgle, as

calculated by the simplified theory of reference 5) iS also plotted in
figure 9. This calculation is based on the assumption of a _
dimensional unswept wing in an incompressiblemedium. The values of
the uncoupled torsion frequency and the density of the testtig medium
at time of,flutter or divergence are employed. Reference 9 shows that
a relatively small amount .ofsweepback raises the divergence speed
sharply. For convenience, however, the numerical quantity VD (based

on the wing at zero sweep) is listed h table I for all the tests.

Effect of tip modifications.– Tests to investigate some of the
over-all effects of tip shape were conducted and some results are
shown in figure 10. Two sweep angles and two length-t~hord ratios
were used in the experiments conducted at two Mach numbers. It iS
seen that, of the three tip shapes ~ed~ n~ely~ tips pemendicul~
to the air stream, perpendicular to the wh% le~~ edge) ~d P~allel
to the air stream,’the wings with tips parallel to the air stream gave
the highest flutter speeds.

Discussion and Comparison-of Analytical

and Expertiental Results

Correlation of analytical and experimental resul%s has been made
for wings swept back in the two differezitmanners; that is, (1) sheared
back with a constsnt value of Ag, and.(2) rotated back. The two types

of sheared wings (series I) and two rotated wings (models 30B and 30D)
have been smalyzed.

.
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.

r,

Results of some solutions of the flutter determinant for a wing
(model 30B) on a rotating base at several angles of sweepback are shown
in figures 11 and 1.2. Figure 11 shows the flutter~peed coefficient as
a function of the bending-to-torsion frequency ratio, snd figure I-2
shows the flutter frequency ratio as a function of the bending-to-torsion
frequency ratio.

The calculated results (for those wings investigated analytically)
are included in tables I and II. The ratios of experimental to analy-
tical flutter speeds and flutter frequencies have been plotted against
the angle of sweep in figures 13 to 16. If an experimental value
coincides with the corresponding analytically predicted value, the
ratio will fall at a value of 1.0 on the figures. Deviations of
experimental results above or below the analytical results appear on
the figures as ratios respectively greater than or less than 1.0.
The flutter-speed ratios plotted in figure 13 for the two rotated
wings show very good agreement between analysis and experiment over .
the range of sweep angle, 0° to 60°. Such good agreement in both the
trends and in the numerical quantities is gratifying but probably
should not be expected in general. In view of the discussion of the
last term in equation (>) it may be of interest to mention that
failure to include the terms arising from the last term of equation (5a)
in the calculations for model 30B would decrease the ratio Ve/VA

corresponding to A = 69° by about 3 percent. The flutter frequency
ratios of figure 14 obtained from the same two rotated wings are in
good agreement.

The flutte~peed ratios plotted in figure 15 for the two t~es
of sheared wings do not show such good confomnity at the low angles
of sweep, whereas for sweep angles beyond 45° the ratios are consider-
ably nearer to 1.0. The sheared wings sre again observed to have a
constant value of Ag of 2.0 (aspect ratio for the whole wing would

be 4.0). For this small value of aspect ratio the finite-span correction
is-appreciable at zero angle of sweep and, if made, would bring better
agreement at that point. Analysis of the confections for finite-span
effects on swept wings requires further consideration.

Figures 13 and 15 also afford a Comparisoriof the behavior of
wings swept back in two manners: (1) rotated bpck with constant length-
to-chord ratio but decreasing aspect ratio (fig. 13), and (2) sheared
back with constant aspect ratio and increasing len@&-herd ratio
(fig. 15). A study of these two figures suggests that the length-to-

()E@r#
chord ratio rather than the aspect ratio — may be the relevant

Area
parameter in determining corrections for finite swept wings. (Admittedly,
effects-of tip shape and root condition are also involved and have not
been precisely separated.)

— ——. -
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Figure 16, which refers to the ssme sheared wings as figure 15,
shows the ratios of experimental to predicted flutter frequencies.
The trend is for the ratio to decrease as the angle of sweep increases.
Table I shows that the flutter frequency fR obtatied with VR

and used as a reference h a previous section of the paper is not
significantly dfiferent from the frequency fA predicted by the present

analysis.

A few remsrks csn be made on’estdmates of over-all trends of the” -
flutter speed of swept wings. As a first consideration the conclusion
may be made that if a rigid infinite yawed wing were mounted on springs
which permitted it to move vertically as a unit and to rotate about an

elastic sxis, the flutter speed would be proportional to ~. A

finite yawed wing mounted on similar springs would be expected to have
-1

a flutter speed lying above the curve of
1

— because of finite-
cos A

span effects. For a finite sweptbsck wing clamped at its root, however,
the greater de~ee of coupling between bending and torsion adversely
affects the flutter speed so as to bring the speed below the curve

1
of — for an inftiite wing. This statement is illustrated in

cos A
figure 17 which refers to a wing (model 30B) on a rotating base. The

.

ordinate is the ratio of flutter speed at a given angle of sweep to
the flutter speed calculated at zero angle of sweep. A theoretical
curve is shown, together with experimentally determined points. Curves

of 1—and—
&A

are shown for convenience of comparison. The
cos A

curve for nmdel 30D (not shown in fig. 17) also followed this trend
quite closely. The foregoing remarks should prove useful for making
estimates and discussing trends but are not intended to replace more
complete calculation. IR particular, mention may be made, for example,
that a far-forward location of section center of gxavity would lead to
an entirely different trend. Moreomr, as is apparent from the analysis,
the bending stiffness can play an increasingly significant role with
increase in the angle of sweep.

The experiments and calculations deal in general with wings
having low ratios of natural first hend~ to first torsion frequencies.
At high values af the ratio of bending frequency to torsion frequency,
the position of the elastic axis becomes relatively mre significtit.
Additional calculations to develop the theoretical trends are desirable.

.
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CONCLUSIONS

In a discussion and comparison of the results of an investigation =
of the flutter of a group of swept wings, the manner of sweep is
si@ficant. This paper deals with two main groups of un~orm, swept
Wings: rotated wings and sheared wings. k presenttig the data,
employment of a certati reference flutter speed was found convenient.
The following conclusions seem to apply:

1. Comparison with experiment indicates that the analysis presented
is satisfactoti for giving the main effects of sweep, at least for nearly
uniform cmtilever wings of moderate lengtl+t~hord ratios. Additional
calculations are desirable to investigate various theoretical trends.

2. The coupling between bendtig ~d torsion adversely affects the
flutter speed. The fact, however, that only a part of the forward
velocity is aerodynamically effective increases the flutter speed.
Certain approxhnate relations can be used to estimate some of the
trends.

3. Although a precise separation of the effects of Mach ntier,
aspect ratio, tip shape, and cente~f~ravity position has not been
accomplished, the order of magnitude of some of these conibtied effects
has been experimentally determined. Expertiental results indicated
are

(a) The location of the section center of gravity is an
tiportant parameter and produces effects for tiweptwings similar
to those for unswept wings over the range (30 percent to 70 per-
cent chord) of locations tested.

(b) Appreciable differences in flutter speed have been found
to be due to tip shape.

(c) The length-t~hord ratio of swept wings is amore
relevant finite-span parameter thsm is the aspect ratio.

(d) Compressibility effects attributable to Mach number are -
fairly small, at least up to a Mach nuniberof 0.8.

(e) The sweptforwsrd wings could not be made to flutter but
diverged before the flutter speed was reached.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics

Langley Air Force Base, Vs., Septeniber9, 1948
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APPENDIX A

NACA TN 2121

.

THE EFFECT OF SWEEP ON T~ FREQUENCIES OF A CANTILEVER BEAM

Early in the investigation it was decided to make an experimental
vibration study of a simple beam at various sweep singles. The uniform,,
plate-like alumin~lloy beam shown in figure 18 was used to make the
study amenable to analysis. Lengtkto<hord ratios of 6, 3, and 1.5
were tested, the length 2 being defined as the length along the mid-
chord. A single 60-inch beam was used throughout the investigation,
the desired length and sweep angle behg obtained by clamping the beam

in the proper position with a l:- by 1~- by lk-inch alumtium-alloy

crossbar.

Figures 18 and 19 show the variation in modes and frequencies with
sweep angle. In most cases, an increase in sweep angle increased the
natural vibration frequencies. As expected, the effect of sweep was
more pronounced at the smaller values of length-to<hord ratio. The .

fundamental mode was found by striking the beam smd measuring the
frequency with a self~enerating vibration pick+rp and paper recorder.
The second and third modes were excited by light-weight electromagnetic
shakers clamped to the beam. These shakers were attached as close to
the root as possible to give a node either predominantly,spanwise or
chordwise. The mode with the spanwise node, designated second made,
was primarily torsional vibration, whereas the mode with the chordwise
node, designated third mode, was prharily a second bending vibration.

The first two bending frequencies and the lowest torsion frequency,
determined analytically for a straight uniform unswept beam, are plotted
in figure 19. Good agreement exists with the experimental results for .
the length-to-chord ratios of 6 and 3, but for a ratio af 1.5 (length
equal to 12 inches and chord equal to 8 inches) less favorable agreement
exists. This discrepancy maybe attributed to the fact that the beam
at the short lengtkto<hord ratio of 1.5 resembled nmre a plate than
a beam and did not meet the theoretical assumptions of a perfectly rigid
base and of shpl-eam stress distributions. The data are valid for
use in comparing the experimental frequencies of the beam when swept
with the frequencies at zero sweep, which was the purpose of the test.

-. —. -.
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APPENDiX B

DISCUSSIONOF THE REFERENCE FLUTTER SPEED

For use in comparing data of swept and unswept wings, a reference
flutter speed VR is convenient. This reference flutter speed is the

flutter speed determined from the simplified theory of reference 5.
This theory deals with two-dimensional unswept wings in incompressible
flow and depends upon a number of wing parameters. The calculations
in this report utilize parameters of sections perpendicular to the
leading edge, first bending frequency, uncoupled torsion frequency,
density of testing medium at the of flutter, and zero damping.
Syuibolically, ,

Variation in reference flutter speed with sweep angle for sheared
swept wings.–The reference flutter speed is independent of sweep angle
for a homogeneous rotated wing and for homogeneous wings swept back by
keeping the length-to-chord ratio constant. For a series of homogeneous
wings swept hackby the method of shearing, however, a definite variation
h reference flutter speed with sweep angle exi~ts stice sweeping a wing
by shearing causes a reduction in chord perpendicular to the wtig le~ing
edge and an increase in length along the midchord as the angle of sweep
is increased. The resulting reduction in the mass+ensity-ratio parameter

‘and first bendtig frequency tends to raise the reference flutter speed,
whereas the reduction in semichord tends to lower the reference flutter
speed as the angle of sweep is increased. The final effect upon the
reference flutter speed depends on the other properites of the wing.
The purpose of this section is to show the effect of these changes on
the magnitude of the reference flutter speed for a series of homogeneous
sheared wings havitig properties similar to those of the sheared swept
models used h this paper.

Let the
sweep angle.
angle:

subscript o refer to propertied of the wing at zero
The following parameters are then functions of the sweep

b = b. COBA

*
.

z
L~

=—

cos A

.
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S3nce m is proportional to h,

R=+= K. cos A

Similarly, since I is proportional to b

Also, because fa is independent of

( )(‘hl cos A)2
o

A,

NACA TN 2121

An estimate of the effect on the flutter speed of these changes in
semichord and mass parsmeter with sweep angle may be obtained from the
appraxtite formula given in reference 5.

This a~roxhate analysis of the effect on the reference flutter speed
does not depend upon the first bending frequency but assumes fh/fa to “

be small. .

In order”to include the effect of chemges in bendirq-torsion
frequency ratio, a mre complete analysis must be carried out. Some
results of a numerical analysis are presented in figure 20, based on a
homogeneous wing with the following properties at zero sweep angle:

Xcg ‘w b. =0.333 “

+a = k5

ra2 = 0.25

f= = 100

()1 = 10R o

()

‘hl
= 0.4

~
o

.

.

—. ———— —.
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In figure 23 the curve showing the decrease in VR with A is slightly

above the &~A factor indicated by the approximate formula.

Effect of elastic+xis position on reference flutter speed.— As ,
pointed out in the definition of elastic axis, the measured locus of

‘lastic centers %a’ fell behind the “section” elastic axis for the

swept models with bases parallel to the air stream. In order to get
an idea of the effect of elastic-axis position on the chosen reference
flutter speed, computations were made both of VR and a second

reference flutter speed VR1 similar to VR except that Xea’ -s
>

/ used in place of ~a. The maximum difference between these two values

of reference flutter speed was of the order of
k
percent. This diffe~

ence occurred at a sweep singleof @o when the ing” elastic axis was
farthest behind the “section” elastic axis. ‘Ihus,for wings of this
type, the reference flutter speed is not very sensitive to elastic–
axis position. The reference flutter frequency fR’ was found h

conjunction with VR’. The maximumdifference between fR and fRf
. was less than 10 percent. Thus, the convenient use of the reference

flutter speed and reference frequency is not altered by these elastic–
axis considerations.

__ —.——.~ ..—.— ———.-— .
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